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Want to see a card trick? Grab a deck of cards; we’ll wait. The trick you are about to
perform is known as the nine card problem and is credited to magician Jim Steinmeyer
[3]. The authors first saw this trick performed by Justin Flom on The Ellen Degeneres
Show.

Now that you have a deck of cards, pull out any nine cards. Suppose they are

in this order. Stack (without reshuffling) the cards so that they
are face down with the ace of clubs on the top and the nine of clubs on the bottom.
Spell out the name of the card that started third from the left, “three of spades.” That is,

1. Starting with the top card, spell out “three” by placing one card on the table for
each letter. Each new card goes on top of the previous ones. Then place the stack
of cards on the table at the bottom of the stack in your hand. The order of the cards

is now from top to bottom.

2. Do the same for “of.” The order of the cards should be .

3. Repeat for “spades,” and the order should be .

To complete the trick, spell out “Ellen.” Here’s the kicker: Flip over the last card

placed on the table to reveal !
You are now an amateur magician! To see this trick performed by a professional

magician, watch Flom’s performance at

http://www.ellentv.com/2013/01/04/card-trick-from-home/.

To add to the performance, audience members, each of whom had a different set
of nine cards, performed the trick and “should have” revealed the card he or she
spelled—“should have” because not all audience members were successful! In this
paper, we use permutations to prove this claim and to generalize the trick.

An explanation of how this trick works as well as suggested ways to spice up its
performance can be found in [2], where Mulcahy also includes an exercise for the
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reader to prove that the only card whose position is determinable is the third card from
the left in a hand of nine cards.

Analysis of the trick

Call the card that starts in the third position from the left the flip card. A simple ob-
servation of the position of the flip card after each spelling helps to explain why the
trick always works. After one spelling, the flip card will be in the third position from
the bottom because when the face-value of every possible card is spelled out, it has at
least three letters. The second spelling moves the flip card to the fifth position from
the bottom, which is also the fifth position from the top, because “of” has two letters.
After the third spelling, the flip card remains in the middle of the stack because each
of the four suits has at least five letters. Thus, when the top five cards are placed on the
table, the last card to be put on the table is the flip card.

The nine card problem can also be explained using permutations. Before doing so,
we introduce some terminology to transition from card tricks to mathematics.

Definition 1. A shuffle of length k is the act of placing k cards in reverse order at the
bottom of the pile.

For example, FIGURE 1 shows the original arrangement of a hand of nine cards and
the arrangement of the cards after a shuffle of length three.

Each shuffle in the trick is associated to a word, and the length of the shuffle is the
number of letters in this word. For example, the shuffle illustrated in Figure 1 is the
shuffle associated to the word “ace.” It is also the shuffle associated to “two,” “six,”
and “ten” because these words all contain three letters. With this in mind, we construct
equivalence classes that partition the set of possible words associated to shuffles. The
equivalence classes for the set of possible first shuffles are {ace, two, six, ten}, {four,
five, nine, jack, king}, and {three, seven, eight, queen}. There is a single equivalence
class for the second shuffle, namely {of}. The equivalence classes for the set of possible
third shuffles are {clubs}, {spades, hearts}, and {diamonds}.

Permutations of [9] = {1, 2, . . . , 9} can be used to describe the arrangements of
the cards after each possible shuffle. The identity permutation, 12 · · · 9, represents the
original arrangement of the cards in hand. Define the permutation w = w1w2 · · ·w9

representing the position of the cards after a shuffle by wi = j if the card originally in
position j ends up in position i after the shuffle.

Observe that the shuffle illustrated in FIGURE 1 takes the original arrangement
of ace, 2, 3, . . . , 9 to the arrangement 4, 5, . . . , 9, 3, 2, ace. Thus, the permutation
456789321 represents the arrangement of the cards after the shuffle associated to the

Figure 1 The bottom row shows the rearrangement of the cards in the top row after a
shuffle of length three.
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equivalence class {ace, two, six, ten}. The shuffles associated to {four, five, nine, jack,
king}, {three, seven, eight, queen}, {of}, {clubs}, {spades, hearts}, and {diamonds}
correspond to the permutations 567894321, 678954321, 345678921, 678954321,
789654321, and 987654321, respectively.

Successive shuffles can then be represented by composing permutations. The com-
position of permutation f with permutation g, f ◦ g, represents the position of each
card after shuffles f and g. Keeping in the spirit of composition of functions, we mul-
tiply these permutations from right to left. For example, the trick with ace of spades as
the flip card is represented by the permutation 456789321 · 345678921 · 789654321 =
154239876.

Since the card that starts in the third position needs to end in the fifth position for
the magic trick to work, this card is not invariant under successive shuffles. In terms of
permutations, this means that the permutations representing possible outcomes of the
trick have 3 in the fifth position. Thus, neither 3 nor 5 is a fixed point in any of these
permutations. However, since 3 is in the same position in each of these permutations,
we call it a pseudo fixed point.

Definition 2. Call i ∈ [9] a pseudo fixed point if each permutation representing the
arrangement of the cards after spelling out the name of a card contains i in the same
position.

Using this terminology, we can prove that the card trick always works.

Lemma 1. For the nine card problem, 3 is the only pseudo fixed point.

Proof. Notice that each of the permutations that represents a possible first shuffle
is of the form a1a2a3a4a5a6321. Similarly, each permutation that represents a possible
third shuffle is of the form b1b2b3b454321. Because “of” is represented by 345678921,
it follows that

a1a2a3a4a5a6321 · 345678921 · b1b2b3b454321

represents the outcome of the trick with any first and third shuffles. The resulting
permutation has 3 in the fifth position. Thus, 3 is a pseudo fixed point. Because each
of the other positions of the resulting permutation depends on the ai and b j , the 3 in
position 5 is the only pseudo fixed point.

In terms of the card trick, this says that the flip card, the card that starts in the third
position, will always be in the fifth position after the third shuffle. Furthermore, the
flip card is the only card whose position after all three shuffles is determinable.

Generalizations of the nine card problem

How does the trick change if the words associated to the shuffles are changed? Sup-
pose we spelled out “math for life” instead of the name of a card. The corresponding
permutation, 217653498, does not have 3 in position 5. This demonstrates that altering
the lengths of the words associated to the shuffles can alter the pseudo fixed points.

First generalization Let’s create a new trick by altering the lower bounds on the
lengths of the first and third shuffles. Denote the lower bound on the length of the
i th shuffle by li for i ∈ {1, 3} and the fixed length of the second shuffle by l2. In the
nine card problem, l1 = 3, l2 = 2, and l3 = 5. To further generalize the nine card
problem, suppose n cards are held. Now permutations of [n] will be used to represent
the arrangement of the cards after each shuffle.
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There is a necessary upper bound of n on the length of a shuffle because there are
not enough cards to complete a longer shuffle. Furthermore, li > 0 for all i , otherwise
there is no shuffle. Because shuffles of length n − 1 and n are represented by the same
permutation, we do not need to consider the case where li = n for any i . Thus, l1, l2,
and l3 have values between 1 and n − 1, inclusive.

The following propositions consider what conditions on the shuffle lengths are re-
quired to produce a pseudo fixed point. They also describe the pseudo fixed points in
the permutations representing the final positions of the cards.

Proposition 1. If there exists a pseudo fixed point when three shuffles are performed
on n cards, then l1 + l2 + l3 ≥ n + 1.

Proof. Suppose l1 + l2 + l3 ≤ n. After the first shuffle, 1 through l1 will be in the
rightmost l1 positions in reverse numerical order. Since l1 + l2 + l3 ≤ n, it follows
that l2 < n − l1. Thus, none of 1 through l1 are in the leftmost l2 positions. So after
the second shuffle, 1 through l1 will be in positions n − l2 − l1 + 1 through n − l2 in
reverse numerical order since the leftmost l2 cards will move to the rightmost positions.
Since l3 is only a lower bound for the number of cards moved, after the third shuffle, the
numbers in the n − l3 leftmost positions are unknown. Positions n − l3 + 1 through n
contain the numbers from positions 1 through l3 after the second shuffle, which depend
on the length of the first shuffle. Therefore, the number in each position after the third
shuffle cannot be determined and there are no pseudo fixed points.

Thus, for there to be a pseudo fixed point, l1 + l2 + l3 ≥ n + 1.

The conditions in Proposition 1 are both necessary and sufficient to determine the
existence of a pseudo fixed point, as shown in Proposition 2.

Proposition 2. If three shuffles are performed on n cards such that l1 + l2 + l3 = n +
s, s ≥ 1, then the number of pseudo fixed points and their positions depend on the
relationship between l1, l2, l3, and s. TABLE 1 provides the five possible cases for
the relationships between these variables, the resulting pseudo fixed points, and their
positions.

TABLE 1: This table summarizes the pseudo fixed points and their positions for the gen-
eralized nine card problem.

min{l1, l3, s} Additional
Restriction Pseudo fixed points Respective positions

1 l1 l2 ≤ n − l1 1, 2, . . . , l1 l2 + 1, l2 + 2, . . . , l2 + l1

2 l1 l2 > n − l1 1, 2, . . . , l1 l2 + 1, l2 + 2, . . . , n,

l2, l2 − 1, . . . , n − l1 + 1

3 l3 l3 > n − l2 1, 2, . . . , l3 l2 + 1, l2 + 2, . . . , n,

l2, l2 − 1, . . . , n − l3 + 1

4 l3 l3 ≤ n − l2 l1 − s + 1, l1 − s + 2, n − l3 + 1, . . . ,

. . . , n − l2 n − 1, n

5 s l1 − s + 1, . . . , l1 l1 + l2 − s + 1, . . . , l1 + l2

Since the same methodology is used to prove each of the five cases, we provide
only the proof of case 1. To challenge yourself, try proving cases 2 through 5, then
compare to the proofs provided in the supplement [4]. Although case 5 does not have
an additional condition, the proof still has the same structure as the others.
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Proof. Case 1: Suppose l2 ≤ n − l1 and min{l1, l3, s} = l1. The permutation after
the first shuffle is

a1a2 · · · an−l1l1 · · · 21

where a1, . . . , an−l1 are the numbers l1 + 1, . . . , n. Since l1 is only a lower bound for
the length of the first shuffle, the arrangement of l1 + 1 through n depends on the
actual length of the shuffle performed. The second shuffle moves a1 through al2 , the l2

leftmost numbers after the first shuffle, to the rightmost positions. Furthermore, now 1
through l1 will be in positions n − l2 through n − l1 − l2, respectively. Therefore, the
permutation after two shuffles is

al2+1 · · · an−l1l1 · · · 21al2 · · · a2a1.

The third shuffle then moves al2+1 through an−l1 , 1 through l1, and al2 through
al2−(s−l1)+1, the leftmost l3 numbers after the second shuffle, to the rightmost posi-
tions. Thus, the permutation after three shuffles is

c1c2 · · · cn−l3al2−(s−l1)+1 · · · al212 · · · l1an−l1 · · · al2+1

where c1 through cn−l3 depend on the actual length of the shuffle performed. Therefore,
1 through l1 are pseudo fixed points and will occur in positions n − (l3 − s) − l1 + 1
through n − (l3 − s), respectively, or l2 + 1 through l1 + l2, respectively.

The trick cannot have more than l1 pseudo fixed points because the cards in the first
n − l1 positions are unknown after the first shuffle. Similarly, since the cards in the
first n − l3 positions of the arrangement after the third shuffle are unknown, the trick
cannot have more than l3 pseudo fixed points.

Furthermore, a trick cannot have more than s = n − (l1 + l2 + l3) pseudo fixed
points because the cards must work their way through the hand and return to the bottom
of the stack throughout the three shuffles, which will not occur unless the shuffles have
total length more than n.

Corollary 1. If three shuffles are performed on n cards such that l1 + l2 + l3 = n + s,
s ≥ 1, there will be min{l1, l3, s} pseudo fixed points.

Second generalization The second shuffle in the nine card problem has a fixed
length of two. To further generalize, let’s consider what happens if the length of the
second shuffle can vary just as the first and third shuffles vary. Pseudo fixed points can
still occur; however, the conditions that guarantee pseudo fixed points will be different.

Again, li > 0 for all i and the length of every shuffle has an upper bound of n.
For this generalization, we do not consider the case where li = n − 1 for any i

because the results are the same as when li = n. Thus, l1, l2, and l3 have values 1
through n − 2 inclusive and n.

In order to guarantee that the position of at least one card is determinable, the shuf-
fles must be sufficiently long enough to cycle the cards through the stack. Specifically,
min{l1, l3} + l2 must be at least n + 1 as shown in Proposition 3.

Proposition 3. If there exists a pseudo fixed point when three shuffles are performed
on n cards, then min{l1, l3} + l2 ≥ n + 1.

Proof. Suppose min{l1, l3} + l2 ≤ n. If min{l1, l3} = l1, then l1 + l2 ≤ n. The first
shuffle will move the leftmost l1 numbers to the rightmost positions, and the permuta-
tion after one shuffle is

a1a2 · · · an−l1l1 · · · 21
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where a1, . . . , an−l1 are the numbers l1 + 1, . . . , n in an unknown order. Since their
order is unknown, l1 + 1 through n cannot be pseudo fixed points.

Since l1 + l2 ≤ n, it follows that l2 ≤ n − l1, and so a1 , a2, . . ., al2 are moved to the
rightmost l2 positions in reverse order. However, since l2 is only a lower bound for the
length of the second shuffle, 1 through l1 may or may not be moved to reverse order
by the second shuffle. Thus, the positions of 1 through l1 are also unknown after the
second shuffle. So there will not be any pseudo fixed points.

Similarly, if min{l1, l3} = l3, then l3 + l2 ≤ n and no numbers have a determinable
position in the permutation representing the composition of the second and third shuf-
fles. Therefore, if a pseudo fixed point exists, then min{l1, l3} + l2 ≥ n + 1.

In addition, the difference between the sum of the lower bounds on two consecutive
shuffles (first and second or second and third) and the number of cards determines the
number of pseudo fixed points.

Proposition 4. If min{l1, l3} + l2 ≥ n + 1, then there are s = min{l1, l3} + l2 − n
pseudo fixed points. Furthermore, min{l1, l3} − s + 1 through min{l1, l3} are the
pseudo fixed points, and they occur in positions l2 through l2 − s + 1, respectively.

Proof. Suppose min{l1, l3} + l2 ≥ n + 1. Let s = min{l1, l3} + l2 − n ≥ 1.
The first shuffle moves the leftmost l1 numbers to the rightmost positions, and the

permutation after one shuffle is

a1a2 · · · an−l1l1 · · · 21

where a1, . . . , an−l1 are the numbers l1 + 1, . . . , n in an unknown order.
The second shuffle moves the leftmost l2 numbers to the rightmost positions. There-

fore, the permutation after two shuffles is

b1b2 · · · bn−l2(n − l2 + 1) · · · l1an−l1 · · · a2a1

where b1, . . . , bn−l2 are 1, . . . , n − l2 in an unknown order.
The third shuffle moves the leftmost l3 numbers to the rightmost positions. The

minimum of l1 and l3 determines which numbers are in these l3 leftmost positions.
Case 1: If min{l1, l3} = l1, then n − l2 + 1 = l1 − s + 1 and n − l2 + s = l1 ≤ l3.

In this case, the leftmost l3 numbers include b1 through bn−l2 , n − l2 + 1 = l1 − s + 1
through l1, and an−l1 through an−l3+1. Therefore, the permutation after three shuffles is

c1c2 · · · cn−l3an−l3+1 · · · an−l1l1 · · · (l1 − s + 1)bn−l2 · · · b2b1

where c1, . . . , cn−l3 depend on the actual length of the third shuffle. Thus, l1 − s + 1
through l1 are pseudo fixed points and occur in positions l2 through l2 − s + 1, respec-
tively.

Case 2: If min{l1, l3} = l3, then n − l2 = l3 − s. In this case, the leftmost l3 numbers
include b1 through bn−l2 and n − l2 + 1 through l3. Therefore, the permutation after
three shuffles is

c1c2 · · · cn−l3l3 · · · (n − l2 + 1)bn−l2 · · · b2b1

where c1, . . . , cn−l3 are l3 + 1, . . . , n in an unknown order. Thus, n − l2 + 1 = l3 −
s + 1 through l3 are pseudo fixed points and occur in positions l2 through l2 − s + 1,
respectively.
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Conclusion

The pseudo fixed points in the permutation associated to the final positions of the cards
represent the cards whose positions are determinable after three shuffles. Since 3 is not
the only pseudo fixed point in the generalized tricks, the flip card does not have to be
the third card from the left. This opens the door to a whole new set of card tricks that
you can perform to impress your friends and colleagues.

With the above propositions in hand, we can now return to the exercise posed by
Mulcahy in [2], which is to show that with n cards, if the card starting in position s
always finishes in position t when the words associated to the three shuffles are the
three words in the name of a playing card, then n = 9, s = 3, and t = 5. Lemma 1
proves that when nine cards are used, n = 9, then necessarily s = 3 and t = 5.

However, nine is not the only value of n for which the position of a flip card is
determinable. By Proposition 1, the number of cards n must be at most nine in order
to have a pseudo fixed point because n < l1 + l2 + l3 = 10. Since the longest shuffle
is of length eight (the shuffle associated to “diamonds”), there must be at least eight
cards in hand. Any other construction of such a trick must have n = 8. By Proposition
2 Case 5, when n = 8, then 2 and 3 are pseudo fixed points that appear in positions 4
and 5, respectively. Thus, n = 9, s = 3, t = 5 is not the only construction of the trick!
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Summary. The nine card problem is a magic trick performed by shuffling nine playing cards according to a set
of rules. The magic is that a particular card will always reappear. The success of this trick can be easily explained
by considering the lengths of the words in the names of playing cards, which define the shuffling rules. In this
paper, we use permutations to prove that the trick will always work. We then use this methodology to generalize
the trick to any number of cards with shuffles according to different rules.
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